Are Mobilities in Hybrid Organic-Inorganic Halide Perovskites Actually "High"?
نویسندگان
چکیده
The outstanding performance of hybrid organic-inorganic perovskites (HOIPs) in photovoltaic devices is made possible by, among other things, outstanding semiconducting properties: long real charge-carrier diffusion lengths, L, of up to 5 and possibly even 10 μm, as well as a lifetime, τ of ~1 μs or more in single crystal and polycrystalline films. 1–9 Top electronic transport materials will have a high “μτ” product, the product of the charge carrier mobility, μ, and lifetime. This is directly related to the diffusion length (L=√(Dτ), where D is the carrier diffusion coefficient given as D=(μq/kBT), where q is the electron charge, kB is the Boltzmann constant, and T is the absolute temperature. Long lifetimes, which imply slow recombination and low trapping probabilities, do not automatically imply high mobilities, which are limited by scattering. Charge carrier mobilities in HOIPs are often described as “high”, but this statement warrants some scrutiny. HOIP mobilities are often compared to those of charge carriers in organic semiconductors (see Table I) and are then indeed much higher. 10 But in our opinion, carrier mobilities in HOIPs need to be placed in the context of typical inorganic semiconductors, for several reasons: First, HOIPs exhibit a band structure resembling that of a good inorganic semiconductor, with the conduction and valence band dominated by the inorganic cations and anions, respectively. 11–14 This leads to small computed charge-carrier effective masses 11,13,14 : a reduced effective mass on the order of 0.1 electron mass, close to that of Si (0.08) or GaAs (0.03) 15 , a value confirmed by magneto-absorption measurements. 16,17 Second, material disorder, which often lowers mobilities dramatically, is low: HOIPs exhibit sharp x-ray diffraction peaks, 18
منابع مشابه
Are Mobilities in Hybrid Organic−Inorganic Halide Perovskites
Actually “High”? T outstanding performance of hybrid organic−inorganic perovskites (HOIPs) in photovoltaic (PV) devices is made possible by, among other things, outstanding semiconducting properties: long real charge carrier diffusion lengths, L, of up to 5 and possibly even 10 μm, as well as a lifetime τ of ∼1 μs or more in single-crystal and polycrystalline films. Top electronic transport mat...
متن کاملPressure-induced dramatic changes in organic–inorganic halide perovskites
Organic-inorganic halide perovskites have emerged as a promising family of functional materials for advanced photovoltaic and optoelectronic applications with high performances and low costs. Various chemical methods and processing approaches have been employed to modify the compositions, structures, morphologies, and electronic properties of hybrid perovskites. However, challenges still remain...
متن کاملControllable lasing performance in solution-processed organic-inorganic hybrid perovskites.
Solution-processed organic-inorganic perovskites are fascinating due to their remarkable photo-conversion efficiency and great potential in the cost-effective, versatile and large-scale manufacturing of optoelectronic devices. In this paper, we demonstrate that the perovskite nanocrystal sizes can be simply controlled by manipulating the precursor solution concentrations in a two-step sequentia...
متن کاملPost-synthetic halide conversion and selective halogen capture in hybrid perovskites.
Reaction with halogen vapor allows us to post-synthetically exchange halides in both three- (3D) and two-dimensional (2D) organic-inorganic metal-halide perovskites. Films of 3D Pb-I perovskites cleanly convert to films of Pb-Br or Pb-Cl perovskites upon exposure to Br2 or Cl2 gas, respectively. This gas-solid reaction provides a simple method to produce the high-quality Pb-Br or Pb-Cl perovski...
متن کاملPhotodetectors Based on Organic–Inorganic Hybrid Lead Halide Perovskites
Recent years have witnessed skyrocketing research achievements in organic-inorganic hybrid lead halide perovskites (OIHPs) in the photovoltaic field. In addition to photovoltaics, more and more studies have focused on OIHPs-based photodetectors in the past two years, due to the remarkable optoelectronic properties of OIHPs. This article summarizes the latest progress in this research field. To ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry letters
دوره 6 23 شماره
صفحات -
تاریخ انتشار 2015